

Alaska Wind Update

BIA Providers Conference Dec. 2, 2015

Energy Efficiency First

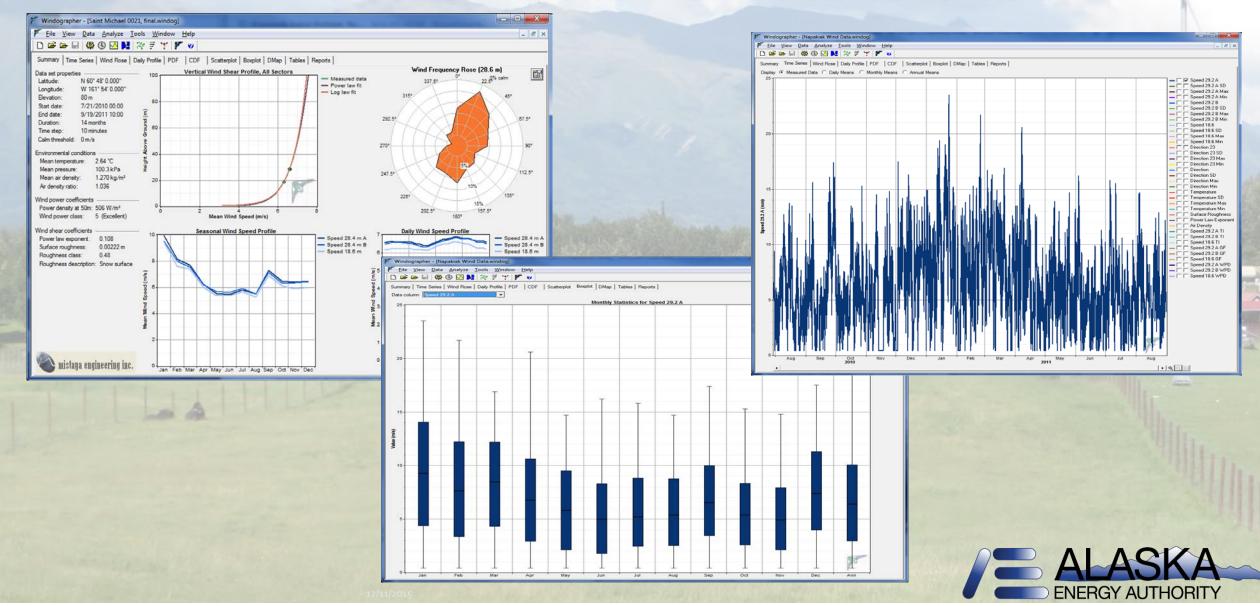
- Make homes, workplaces and communities energy efficient thru weatherization and efficient lighting/appliances.
- Because of PCE, residential rate payers won't see as much benefit from a wind farm as do commercial customers.
- Once efficient, pursue renewable energy. Otherwise, money is wasted to build an oversized system.
- EE makes economic sense faster payback (2-3 years vs. 15-20 for wind projects in rural Alaska) than any other option and immediate reduction in monthly heat and electric bills.

How windy is it, really?

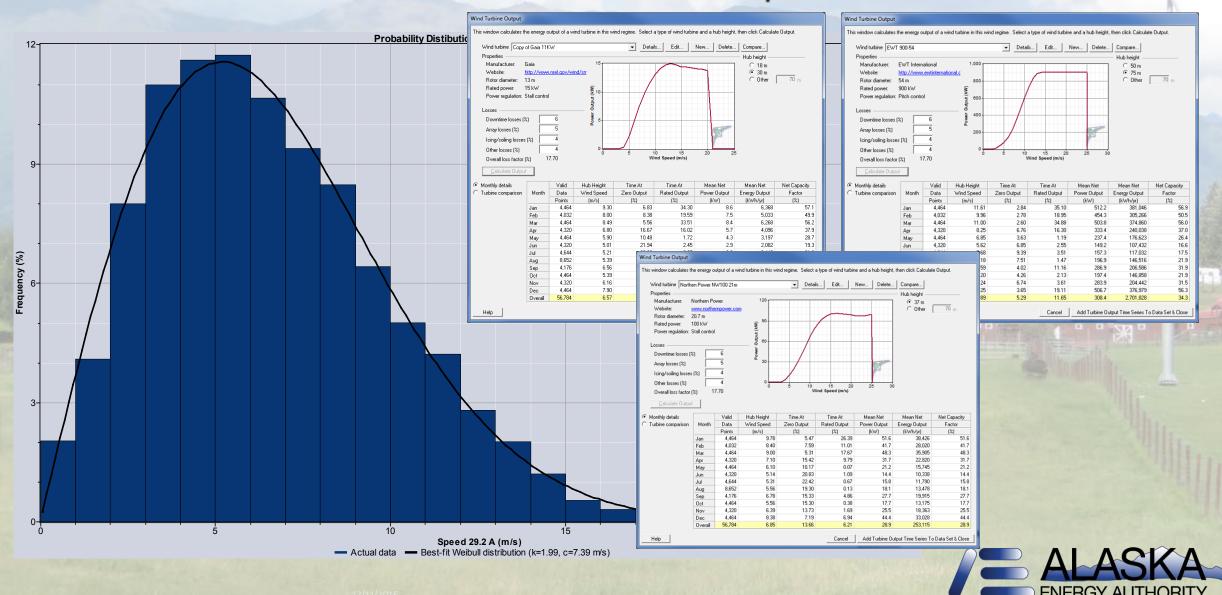
- Anecdotal weather data or observations can be deceptive. For example:
 - A few windy days get some people wanting to install wind turbines.
 - It only takes one or two rainy days for people to think that fire danger is reduced.
 - A short cold spell can fool us into not seeing an overall warming trend.
 - Our bodies can sense the weather, but we need to collect data to understand the long-term climate and minuteto-minute variability.
- What matters is the wind speed throughout the course of an entire year.

The formula for wind power is: Power = 0.5 x Rotor Swept Area x Air Density x Velocity³

Thus, doubling the wind speed from 3 meters/sec to 6 meters/sec increases the power by 8X.

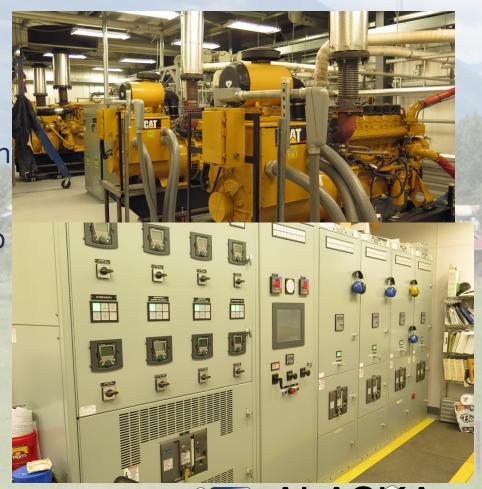

How windy is it, really?

- Install guyed meteorological (met) towers to collect data at 10m, 30m, 50m or higher.
- Met towers require a permit from the FAA and consultation with US Fish & Wildlife, State Historic Preservation Office and possibly other agencies.
- Measure the wind for a minimum of one year.



What the met tower data tells us

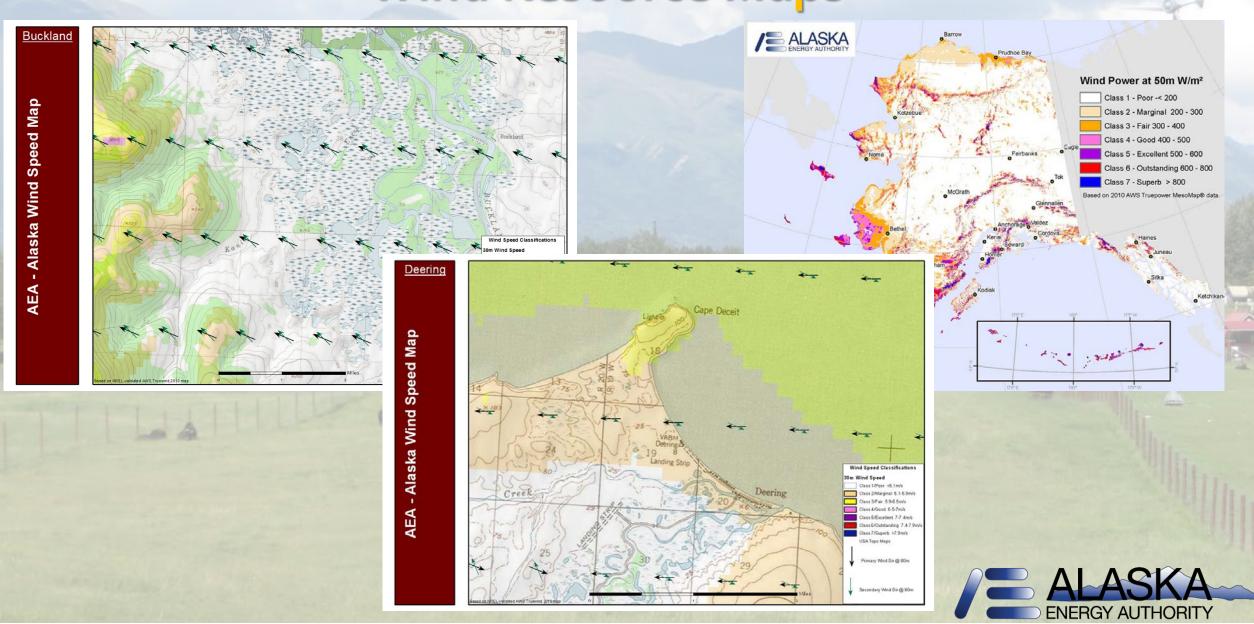
Wind distribution vs. turbine power curve


Stop! Do you really want to attempt this on your own?

- Village and utility must be partners MOU.
- Contact your regional Native corporation to see if they have engineering resources or can help fund the project.
- Request proposals (RFP) from engineering firms, environmental permitting consultants and project management companies.
- Even experienced utilities like AVEC, Kodiak Electric and GVEA partner with consultants.

Can your existing electrical distribution system support wind technology?

- Do you have newer diesel gensets with fast, electronic injection controls or mechanical governors?
- Are your gensets sized so that you can run at optimum fuel efficiency both when the wind is blowing and when it's calm?
- Are your distribution lines, transformers and meters up to code?
- Are your phases balanced?
- If you can't answer "yes" to all of these questions, you could save more money by fixing your existing power system.


Pick a potential site

- Pick a site that is close to the existing power distribution grid.
- Site should have little or no tall vegetation and no buildings to block prevailing winds.
 - Site met tower at a minimum distance that is 5X the height of any obstructions.
- Consult AEA's Energy Pathway document
 (ftp://ftp.aidea.org/AlaskaEnergyPathway/2010EnergyPathway8-12Press.pdf), the Community
 Database
 (ftp://ftp.aidea.org/2010AlaskaEnergyPlan/2010%20Alaska%20Energy%20Plan/Community%20Deployment%20Scenarios/) and the state wind resource maps.

Wind Resource Maps

Wind Classifications

- Class 1/Poor: Pursue options other than wind
- Class 2/Marginal: High costs of development in rural Alaska prevent an economical project.
- Class 3/Fair: A large project on the Railbelt may be cost effective. Remote village projects may have a payback longer than the 20-year life of wind turbines.
- Class 4/Good: A well-designed project will have a payback of 15-20 years.
- Class 5/Excellent: A well-designed project will have a payback of 12-15 years.
- Class 6/Outstanding: A well-designed project will have a payback of 10-12 years, but damaging high-wind events may be a concern.
- Class 7/Superb: Project developer may want to find a sheltered site to protect turbines from periodic damaging winds.

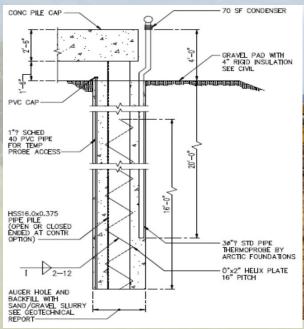

Set up a met tower

• Finding suitable anchors in permafrost, logging slash or rocky soils can be difficult. AEA can help select good sites.

Portable met towers

- Install multiple 10meter towers
 simultaneously to
 identify the best
 location for a long term
 study
- Tower costs ~ \$1,000
- Weighs 75 lbs.
- Can be erected with two people and hand tools.

Project milestones *


Feasibility / \$120k-\$140k:

- Purchase, ship and erect met tower
- Obtain site control, right of entry and permits for met tower
- Geotech site recon visit and report
- Dismantle met tower
- Draft and final wind and solar resource analysis
- Draft and final conceptual design report

Permitting/Design / ~\$250k

- Permitting
- Negotiate site control
- Avian and other environmental analyses
- 65% Civil, Mechanical, and Electrical Design
- Revise Budget and Schedule

Construction costs \$1.5 million to >\$5 million >\$20 million depending on community size

* This is the bare minimum. Some projects require additional steps

Project sizing and economics

Penetration	0 " 0"	Penetration		
Class	Operating Characteristics	Instantaneous	Average	
LOW	Diesel runs full-time Wind power reduces net load on diesel All wind energy goes to primary load No supervisory control system	< 50%	< 20%	
MEDIUM	Diesel runs full-time At high wind power levels, secondary loads are dispatched to insure sufficient diesel loading or wind generation is curtailed Requires relatively simple control system		20% – 50%	
HIGH	Diesels may be shut down during high wind availability Auxiliary components are required to regulate voltage and frequency Requires sophisticated control system	100% – 400%	50% - 150%	

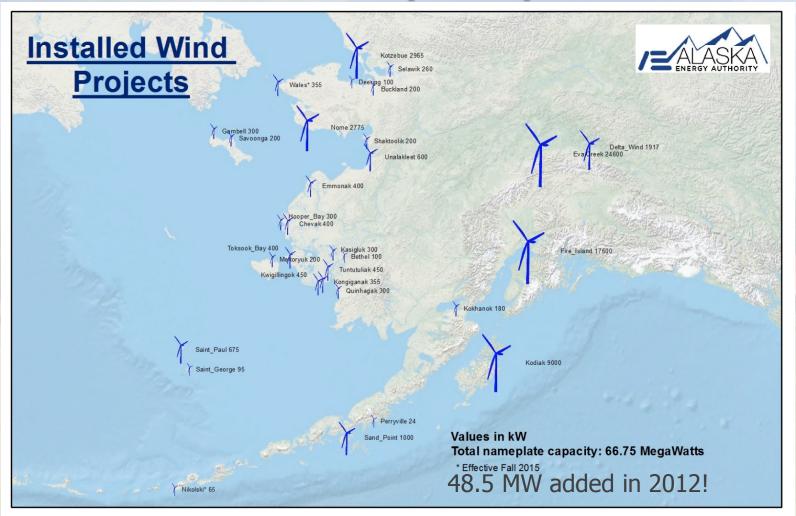
- Projects that are too small won't take advantage of economies of scale.
- Projects that are too large may have excess power that never gets used.

Unalakleet Wind

RE Fund Grant \$ 4,000,000

Total Project Cost \$ 6,000,000

Est Fuel


Displaced/yr 90,000 gal

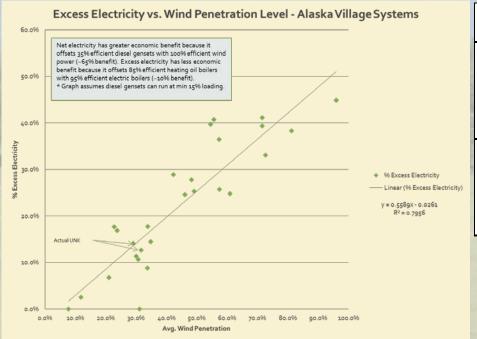
Capacity: 600 kW

Installed Wind Capacity – 66.8MW

PCE Impacts

Village name:	Emmonak	Comments			
Total kWh produced:	3,188,632				
kWh sold:	3,024,511				
Station service:	164,121	5.43%			
PCE eligible residential kWh:	777,774	25.72%			
PCE eligible community facilities kWh:	633,539	20.95%			
Non PCE eligible kWh:	1,613,198	53.34%			
Diesel kWh:	2,450,690	76.86%			
Wind kWh:	737,942	400kW turbines at 21.1% Cap Factor			
Non fuel expenses:	\$767,671				
Fuel expenses	\$738,967				
Calculated res/comm rate - before PCE	\$0.4981	Without wind energy			
Calculated PCE reduction	\$0.3365	Without wind energy			
Calculated residential rate after PCE	\$0.1616	Without wind energy			
Fuel expense with wind energy	\$577,975				
Drop in fuel cost per kWh with wind	\$0.0532				
Calculated res/comm rate with wind	\$0.4449	With wind energy			
Drop in Calculated residential rate	\$0.0532				
Calculated PCE reduction with wind	\$0.2860	With wind energy			
Drop in PCE discount with wind	\$0.0506				
Calculated residential post PCE rate	\$0.1590	With wind energy			
Actual change to residential rate after PCE>	\$0.0027				
Actual change to commercial rate with wind energy	\$0.0532				
* Actual rates will be higher when residential customers exceed the 500kWh per month PCE limit.					

12/11/2015

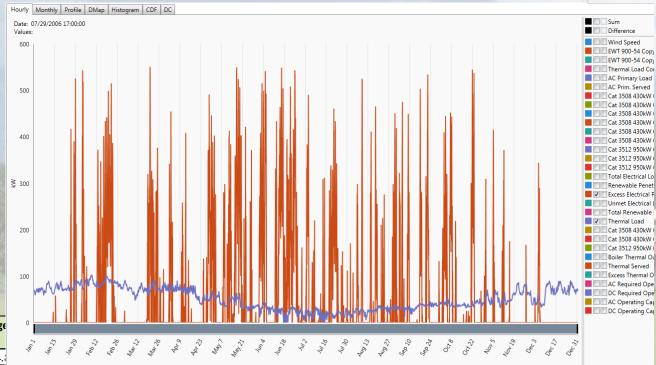

ENERGY AUTHORITY

¹⁹

Secondary Heat Loads - Critical to Project Success

 Failing to fully consider, model and design secondary loads in hybrid wind systems ensures a least a 15-20 point gap from expected annual energy production.

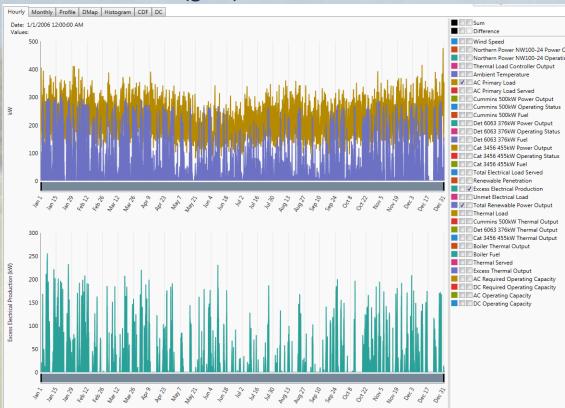
• Impacts of curtailment:


Installed Wind	Total Wind Energy	Excess	Net Elec	Net Thermal	Control Method	Fuel Savings	Potential
Capacity (kW)	Produced (kWh)	Electricity	kWh	kWh		@ \$4.5.gal	Benefit
300 (Hi Pen)	888,180	292,307	595,873	292,307	Elec Boiler or ETS units	\$240,274.89	100.00%
300 (Hi Pen)	888,180	292,307	595,873	0	Turbine max setpoint	\$206,263.73	85.84%
300 (Hi Pen)	888,180	292,307	595,873	0	Non value dump load	\$206,263.73	85.84%
300 (Hi Pen)	489,227	0	489,227	0	Curtailment	\$169,347.81	70.48%
300 (Hi Pen)	888,180	262,731	625,449	0	15-min Batt/FW storage	\$216,501.58	90.11%
200 (Med Pen)	592,117	107,310	484,807	107,310	Elec Boiler or ETS units	\$180,303.78	100.00%
200 (Med Pen)	592,117	107,310	484,807	0	Turbine max setpoint	\$167,817.81	93.08%
200 (Med Pen)	592,117	107,310	484,807	0	Non value dump load	\$167,817.81	93.08%
200 (Med Pen)	396,716	0	396,716	0	Curtailment	\$137,324.77	76.16%
200 (Med Pen)	592,117	90,975	501,142	0	15-min Batt/FW storage	\$173,472.23	96.21%

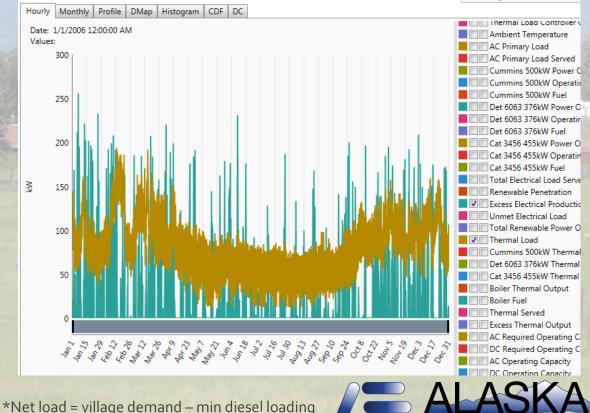
Modeling of Thermal Systems

- Simply comparing annual heat demand with annual excess energy leads to significant error in system design.
- While the health clinic in this village consumes almost twice as much energy over the course of a year, the heat load is much less variable than the excess wind.
 Additional heat loads must be added to the system design to avoid significant curtailment of wind turbines.

The state of the s										yn yn
Community building/load	Connected	Current annual heating	Thermal mass - Equiv.	MMBTU	kWh	Average	0			
	to HR Loop?	oil consumption*	gals. of storage	Equiv	Equiv	kW	1,15	£ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 %	2
Public Works-HEMF	Υ	19,216		2,652	743,163	84.	2 4 4	ي رق رق	7, 7,	4. 45 %
Sewer Plant	Υ	13,695		1,890	529,639	60.46	Estimate 2	20% of tota	l load is ui	nmet
School	N	116,800		16,118	4,517,240	515.67	1840000)		
PSO	N	6,348		876	245,502	28.03	100000	<btu hr<="" td=""><td></td><td></td></btu>		
Health clinic	N	14,219		1,967	549,925	62.78	224000	<btu hr<="" td=""><td></td><td></td></btu>		
Water plant	N	11,426		1,577	441,904	50.45	180000	<btu hr<="" td=""><td></td><td></td></btu>		
Fire Station	N	16,758		2,313	648,126	73.99	264000	<btu hr<="" td=""><td></td><td></td></btu>		
Power plant	Υ	1,625		224	62,847	7.17	Estimate 2	20% of tota	l load is ui	nmet
				0	0	0.00)			
				0	0	0.00				
Totals		200,087		27,612	7,738,346	883.37	331,107	< xcess l	wh from	HOMER



^^ Poorly matched excess vs. heat load



Detailed modeling of electric load, heat load and wind energy

Because wind energy is variable, there are times throughout the year when there is more energy available (turquoise = excess) from the wind turbines (purple) than the current net* village electrical load (gold).

 Thermal loads (gold) for buildings and facilities in a community can make use of this excess wind energy (turquoise) to supplement other sources (power plant heat recovery or oil-fired boiler).
 Reasonably well-matched excess and load:

Key Learnings

- Energy efficiency programs should be pursued first to maximize community benefit.
- Partner up with people who have a track record of success on other Alaska projects.
- Collection of wind data and electrical load data helps to build an accurate system model that can identify issues before you build the project.

- AEA can assist with initial site selection, wind data analysis, system modeling and defining project scope.
- Wind systems have excess energy that must be accounted for in your system design with secondary loads or energy storage.
- Good planning, design and project management drives high-performing wind energy systems.

